Margaret24.ru

Деньги в период кризиса
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы стохастического факторного анализа

Методы детерминированного и стохастического факторного анализа (стр. 1 из 4)

3.1.2.Способы оценки влияния факторов

детерминированном факторном анализе…………………………………..

Введение…………………………………………………………………….3
1. Факторный анализ………………………………………………………….4
2. Задачи факторного анализа…………………………………………………6
3. Методы факторного анализа………………………………………………..9
3.1. Детерминированный факторный анализ………………………………….9
3.1.1. Модели детерминированного факторного анализа………………………..10
18
3.2. Стохастический факторный анализ…………………………………………19
3.2.1. Методы стохастического факторного анализа…………………………….21
Заключение………………………………………………………………….22
Список используемой литературы………………………………………….24

Экономический анализ – система специальных знаний, обеспечивающая изучение хозяйственных процессов и явлений в их взаимосвязи и взаимозависимости. Только с помощью анализа можно научно обосновать технико-экономические показатели работы предприятия и определить их взаимосвязь и роль в хозяйственной деятельности предприятия, выявить влияние факторов, измерить их действие и оценить. Современный уровень производства требует повышения качества работы во всех его звеньях, усиления роли экономических рычагов управления с тем, чтобы способствовать повышению эффективности производства.

Всю систему управления можно разделить на три взаимосвязанные стадии: планирование, учет и анализ. Анализ занимает промежуточное положение между сбором экономической информации и принятием управленческих решений. Все виды учета представляют соответствующую информацию предприятию (статическую, оперативную, бухгалтерскую). Любая информация должна быть изучена и исследована, этим занимается экономический анализ, предъявляя соответствующие требования к качеству, достоверности, глубины информации.

Экономический анализ используется как при изучении народного хозяйства страны, так и хозяйственной деятельности предприятий.

Высшая математика имеет тесную связь, т.к. принятие оптимальных решений в анализе вытекает на основе экономико-статистических и математических приемов.

Широкое использование математических методов является важным направлением совершенствования экономического анализа, повышает эффективность анализа деятельности пред­приятий и их подразделений. Это достигается за счет сокраще­ния сроков проведения анализа, более полного охвата влияния факторов на результаты коммерческой деятельности, замены приближенных или упрощенных расчетов точными вычислени­ями, постановки и решения новых многомерных задач анали­за, практически не выполнимых вручную или традиционными методами.

Применение математических методов в экономическом анализе деятельности предприятия требует:

Системного подхода к изучению экономики предприятий, учета всего множеств существенных взаимосвязей между различными сторонами деятельности предприятий; в этих условиях сам анализ все более приобретает черты системного в кибернетическом смысле слова;

Совершенствование системы экономической информации о работе предприятий;

наличия технических средств (ЭВМ и др.), осуществляющих хранение, обработку и передачу экономической информации в целях экономического анализа;

организации специального коллектива аналитиков, состо­ящего из экономистов-производственников, специалистов по экономико-математическому моделированию, математиков-вычислителей, программистов-операторов и др.

Сформулированная математически задача экономического анализа может быть решена одним из разработанных математических методов.

1. Факторный анализ.

Методы элементарной математики используются в обыч­ных традиционных экономических расчетах при обосновании потребностей в ресурсах, учете затрат на производство, раз­работке планов, проектов, при балансовых расчетах и т. д.

Выделение методов классической высшей математики обусловлено тем, что они применяются не только в рам­ках других методов, например методов математической стати­стики и математического программирования, но и отдельно. Так, факторный анализ изменения многих экономических по­казателей может быть осуществлен с помощью дифференциро­вания и интегрирования.

Под экономическим факторным анализом понимается постепенный переход от исходной факторной системы к конечной факторной системе, раскрытие полного набора прямых, количественно измеряемых факторов, оказывающих влияние на измерение результативного показателя.

Функционально — детерминированная связь – это связь, при которой каждому значению факторного признака соответствует вполне определённое неслучайное значение результативного признака. Связь, при которой каждому значению факторного признака соответствует множество значений результативного признака (т.е. определённое статистическое распределение) – стохастическая (вероятностная) связь. Соответственно типу связи аналитические приёмы и способы делятся на методы детерминированного факторного анализа и методы стохастического факторного анализа.

2. Задачи факторного анализа.

Рассмотрим примерную классификацию задач факторного анализа работы предприятий с точки зрения использование математических методов.

При прямом факторном анализе выявляются отдельные факторы, влияющие на изменение результативного показателя процесса, устанавливаются формы детерминированной (функциональной) или стохастической зависимости между ре­зультативным показателем и определенным набором факто­ров и, наконец, выясняется роль отдельных факторов в измене­нии результативного экономического показателя.

Постановка задачи прямого факторного анализа распрост­раняется на детерминированный и стохастический случай.

Пусть у=f(x) некоторая функция, характеризующая из­менение результативного показателя или процесса; х1, х2, . хn, факторы, от которых зависит функция f(xi).Задана функци­ональная детерминированная форма связи изучаемого показа­теля у с набором факторов хг х2,. хn; у =f(х1, х2,…,хn).Пусть показатель уполучил приращение (Δy) за анализируе­мый период. Требуется определить, какой частью, численное приращение функции у=f(x12, . хn)обязано приращению каждого аргумента (фактора). Сформулированная таким об­разом задача есть постановка задачи прямого, детерминиро­ванного факторного анализа.

Примерами прямого, детерминированного, факторного анализа являются; анализ влияния производительности труда и численности работающих на объем произведенной продукции (у — объем продукции; х, z— факторы; задана функ­циональная форма связи y=х×z); анализ влияния величи­ны прибыли, стоимости основных производственных фондов и нормируемых оборотных средств на уровень рентабельности (у — уровень рентабельности; х, z, v— соответствующие факторы; заданная функциональная форма связи y=x/(z+v)). Зада­чи прямого детерминированного факторного анализа — на­иболее распространенная группа задач в анализе хозяйствен­ной деятельности.

Рассмотрим особенности постановки задачи прямого сто­хастического факторного анализа. Если в случае прямого де­терминированного факторного анализа исходные данные для анализа имеются в форме конкретных чисел, то в случае прямого стохастического факторного анализа заданы выбор­кой (временной или поперечной). Решения задач стохастичес­кого факторного анализа требуют: глубокого экономического исследования для выявления основных факторов, влияющих на результативный показатель; подбора вида регрессии, который бы наилучшим образом отражал действительную связь изучаемого показателя с набором факторов; разработки метода, позволяющего определить влияние каждого фактора на результативный показатель.

Если результаты прямого детерминированного анализа должны получиться точными и однозначными, то стохастичес­кого — с некоторой вероятностью (надежностью), которую следует оценить.

Примером прямого стохастического факторного анализа является регрессионный анализ производительности труда и других экономических показателей.

В экономическом анализе, кроме задач, сводящихся к дета­лизации показателя, к разбивке его на составляющие части существует группа задач, где требуется увязать ряд экономи­ческих характеристик в комплексе, т. е, построить функцию содержащую в себе основное качество всех рассматриваемых экономических показателей-аргументов, т. е. задач синтеза. В данном случае ставится обратная задача (относительно за­дачи прямого факторного анализа) — задача объединения ряда показателей в комплекс.

Пусть имеется набор показателей х1,х2,. xnхарактеризу­ющих некоторый экономический процесс (L). Каждый из пока­зателей односторонне характеризует процесс L. Требуется по­строить функцию f(xi) изменения процесса L, содержащую в ceбe основные характеристики всех показателей х12,…,хnили некоторых из них в комплексе. В зависимости от цели исследования функция f(xi) должна характеризовать процесс в статике или в динамике. Данная постановка задачи называет­ся задачей обратного факторного анализа.

Задачи обратного факторного анализа могут быть детерминированными и стохастическими. Примерами задачи обратного детерминированного факторного анализа являются зада­чи комплексной оценки производственно-хозяйственной деяте­льности, а также задачи математического программирования в том числе и линейного. Примером задачи обратного стохастического факторного анализа могут служить производствен­ные функции, которыми устанавливаются зависимости между величиной выпуска продукции и затратами производственных факторов (первичных ресурсов).

Стохастический факторный анализ

Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности строится на обобщении закономерностей варьирования значений экономических показателей – количественных характеристик факторов и результатов хозяйственной деятельности. Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов.

Стохастическая (вероятностная) связь – связь, при которой каждому значению факторного признака соответствует множество значений результативного признака.

Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т. е. возможность повторно измерить параметры одного и того же явления в различных условиях.

В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления).

Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (не изучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной вариации).

Из этого вытекает третья предпосылка стохастического анализа – достаточная размерность (численность) совокупности наблюдений» позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи).

Четвертая предпосылка стохастического подхода – наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому материалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов.

Основная особенность стохастического факторного анализа заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретического) анализа, необходим количественный анализ эмпирических данных.

Методы стохастического факторного анализа

Способ парной корреляции. Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями, не находящимися в функциональной зависимости, т.е. связь, проявляется не в каждом отдельном случае, а в определенной зависимости. С помощью парной корреляции решаются две главные задачи: оставляется модель действующих факторов (уравнение регрессии); дается количественная оценка тесноты связей (коэффициент корреляции).

Матричные модели. Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

Математическое программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

Теория игр как раздел исследования операций — это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Литература:

  1. Баканов М. И., Мельник М. В., Шеремет А. Д. Теория экономического анализа. Учебник 5-еизд., перераб. и доп.-М.: Финансы и статистика,2005
  2. Фролова Т.А. Анализ и диагностика финансово-хозяйственной деятельности предприятия. Конспект лекций, Таганрог: ТРТУ, 2006

Тема: Методы стохастического факторного анализа

Стохастические модели

Как уже говорилось выше, стохастические модели – это модели вероятностные. При этом в результате расчетов можно сказать с достаточной степенью вероятности, каково будет значение анализируемого показателя при изменении фактора. Самое частое применение стохастических моделей – прогнозирование.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

  • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

  1. наличие совокупности;
  2. достаточный объем наблюдений;
  3. случайность и независимость наблюдений;
  4. однородность;
  5. наличие распределения признаков, близкого к нормальному;
  6. наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Основные понятия корреляционного и регрессионного анализа

Корреляционный анализ — совокупность методов математической статистики, позволяющих оценивать коэффициенты, характеризующие корреляцию между случайными величинами, и проверять гипотезы об их значениях на основе расчета их выборочных аналогов.

Корреляционным анализом называется метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

В наиболее общем виде задача статистики (и, соответственно, экономического анализа) в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственнокорреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачирегрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, что дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Парная корреляция

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

Y XY1Y2.YzИтогоYi
X1f11.f1z
X1f21.f2z
.......
Xrfk1k2.fkz
Итого . n
.

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У.

Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

Корреляционным полем называется множество точек i, Yi> на плоскости XY (рисунки 6.1 — 6.2).

Рисунок 6.1 – Пример корреляционного поля (положительная корреляция)Рисунок 6.2 – Пример корреляционного поля (отрицательная корреляция)

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет положительный угол наклона ( / ), то имеет место положительная корреляция (пример подобной ситуации можно видеть на рисунке 6.1).

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет отрицательный угол наклона ( ), то имеет место отрицательная корреляция (пример изображен на рисунке 6.2).

Если же в расположении точек нет какой-либо закономерности, то говорят, что в этом случае наблюдается нулевая корреляция.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Хi среднее значение У, т.е. , как

Последовательность точек (Xi, ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.

Экономический анализ. Шпаргалки (24 стр.)

где у – результативный показатель; x i – факторы; ∆ y ( x i ) – отклонение результативного показателя за счет фактора х i .

Балансовый метод применяют также для определения размера влияния отдельных факторов на изменение результативного показателя, если известно влияние остальных факторов:

Метод меньших чисел используется при изучении ритмичности, или равномерности, работы предприятия, изучении ассортиментности выпуска продукции, структурных сдвигов в производстве. При использовании метода меньших чисел просчитывается коэффициент (К):

где Σ А – сумма фактических значений изучаемых показателей по периодам, но не выше плановых (базисных); Σ А 1 – сумма плановых заданий по периодам.

Метод среднего квадратического . Оценка ритмичности работы предприятия с помощью коэффициента вариации или среднего квадратического:

где Кр – коэффициент ритмичности.

где V – коэффициент вариации; σ – квадратическое отклонение; x ср – среднее значение показателей; x – фактическое значение показателей; n – количество периодов или показателей.

94. Стохастический факторный анализ

Стохастический анализ направлен на изучение косвенных связей – опосредованных факторов (в случае невозможности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.

Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей – количественных характеристик факторов и результатов хозяйственной деятельности.

В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, первой предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений.

Второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной к вариации). Из этого вытекает третья предпосылка стохастического анализа – достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи).

Четвертая предпосылка стохастического подхода – наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей.

95 Математико-статистические методы стохастического моделирования

В экономических исследованиях нашли применение следующие математико-статистические методы стохастического моделирования хозяйственных явлений и процессов: оценка связи и корреляции между показателями; оценка статистической значимости связей; регрессионный анализ; выявление параметров периодических колебаний экономических показателей; группировка многомерных наблюдений; дисперсионный анализ; современный факторный (компонентный) анализ; трансформационный анализ.

Необходимость включения математико-статистических методов в методику анализа хозяйственной деятельности предприятий зависит от значимости решаемых при помощи данных методов количественных (статистических) задач.

Можно выделить следующие наиболее типичные классы задач в экономическом анализе:

• изучение наличия, направления и интенсивности связи экономических показателей;

• изучение наличия, направления и интенсивности связи экономических показателей;

• ранжировка и классификация факторов экономических явлений;

• выявление аналитической формы связи между показателями;

• сглаживание (выявление тренда) динамики изменения уровня показателей;

• выявление параметров закономерных периодических колебаний уровня показателей;

• ранжировка и классификация хозяйств (предприятий и их подразделений);

• изучение размерности (сложности, многогранности) экономических явлений;

• выявление наиболее информативных (обобщающих) синтетических показателей;

• изучение внутренней структуры связей в системе экономических показателей;

• сравнение структуры связей в разных совокупностях.

Самая общая и типичная статистическая задача в экономическом анализе – изучение наличия, направления и интенсивности связей между показателями. Это первый этап познания закономерностей формирования результатов хозяйственной деятельности. Предположение о наличии и тесноте связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Задача экономического анализа – раскрыть качественную основу взаимосвязи между количественными характеристиками экономических процессов.

96. Методы стохастического факторного анализа

Самая общая и типичная статистическая задача в экономическом анализе – изучение наличия, направления и интенсивности связей между показателями . Это первый этап познания закономерностей формирования результатов хозяйственной деятельности. Предположение о наличии и тесноте связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Источник возникновения этих общих закономерностей может быть разным – причинно-следственная связь между показателями, зависимость от общего фактора, случайное совпадение элементов вариации.

Задача экономического анализа – раскрыть качественную основу взаимосвязи между количественными характеристиками экономических процессов.

Стохастическое исследование связи происходит с помощью методов корреляционного анализа – коэффициентов и отношений корреляции. При этом в зависимости от характера исходной информации применяются разные приемы корреляционного анализа:

• оценка парной корреляции между показателями с цифровой шкалой измерения;

• ранговая корреляция и коэффициенты, рассчитанные по так называемым матрицам сопряженности для анализа связей между

• каноническая корреляция для анализа связи между группами показателей;

• частная корреляция, которая позволяет исследовать связь между двумя показателями, элиминируя влияние других показателей;

• множественная корреляция для оценки зависимости одного показателя от группы аргументных показателей.

В случае нелинейности связи и при изучении множественной корреляции задача определения тесноты связи соотносится с проблемой изучения аналитической формы связи (коэффициент, или отношение, корреляции в этом случае прямо зависит от выбранной формы связи). Выявление аналитической формы связи означает моделирование хозяйственного процесса путем выявления закономерностей формирования значений результатного показателя под влиянием факторных показателей. Это основная и самая сложная задача в экономическом анализе, которая при стохастическом подходе решается методом регрессионного анализа.

97. Ранжировка и классификация факторов, классификация и ранжировка хозяйственных объектов

Изучение интенсивности и аналитической формы связей между показателями с помощью методов корреляционного и регрессионного анализа позволяет решать важную для экономического анализа статистическую задачу – ранжировку и классификацию факторов , влияющих на анализируемое экономическое явление. Можно выделять существенные и несущественные для данного явления факторы, группу факторов, позволяющих с достаточной точностью управлять функционированием экономических систем, а также ранжировать факторы по интенсивности их влияния на изучаемое явление или процесс.

Читать еще:  Этапы анализа проблемной ситуации
Ссылка на основную публикацию
Adblock
detector